Converse Of Pythagorean Theorem

Approved & Edited by ProProfs Editorial Team
The editorial team at ProProfs Quizzes consists of a select group of subject experts, trivia writers, and quiz masters who have authored over 10,000 quizzes taken by more than 100 million users. This team includes our in-house seasoned quiz moderators and subject matter experts. Our editorial experts, spread across the world, are rigorously trained using our comprehensive guidelines to ensure that you receive the highest quality quizzes.
Learn about Our Editorial Process
| By Suzdison
S
Suzdison
Community Contributor
Quizzes Created: 1 | Total Attempts: 1,109
Questions: 8 | Attempts: 1,109

SettingsSettingsSettings
Pythagorean Theorem Quizzes & Trivia

Middle school math quiz to test knowledge of convers of pythagorean theorem


Questions and Answers
  • 1. 

    A triangle with sides length of 5,12, and 13 units is a right triangle.

    • A.

      True

    • B.

      False

    Correct Answer
    A. True
    Explanation
    The given triangle with sides of length 5, 12, and 13 units is a right triangle because it satisfies the Pythagorean theorem. According to the theorem, in a right triangle, the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides. In this case, 5^2 + 12^2 = 25 + 144 = 169, which is equal to 13^2. Therefore, the given triangle is a right triangle.

    Rate this question:

  • 2. 

    A triangle with sides length of 7,11, and 13 units is a right triangle.

    • A.

      True

    • B.

      False

    Correct Answer
    B. False
    Explanation
    A triangle with sides of lengths 7, 11, and 13 units is not a right triangle because it does not satisfy the Pythagorean theorem. According to the theorem, in a right triangle, the square of the length of the hypotenuse (the longest side) is equal to the sum of the squares of the lengths of the other two sides. In this case, 7^2 + 11^2 is not equal to 13^2, so the triangle is not a right triangle.

    Rate this question:

  • 3. 

    A triangle with sides length of 20, 21, and 28 units is a right triangle.

    • A.

      True

    • B.

      False

    Correct Answer
    B. False
    Explanation
    A triangle with sides of length 20, 21, and 28 units cannot be a right triangle because it does not satisfy the Pythagorean theorem. According to the theorem, in a right triangle, the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the lengths of the other two sides. In this case, if we square the lengths of the sides, we get 400, 441, and 784. However, 784 is not equal to the sum of 400 and 441, so the triangle is not a right triangle.

    Rate this question:

  • 4. 

    A triangle with sides length of 9, 12, and 15 units is a right triangle.

    • A.

      True

    • B.

      False

    Correct Answer
    A. True
    Explanation
    A triangle is classified as a right triangle if it satisfies the Pythagorean theorem, which states that the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the lengths of the other two sides. In this case, the lengths of the sides are 9, 12, and 15 units. By applying the Pythagorean theorem, we can see that 9^2 + 12^2 = 81 + 144 = 225, which is equal to 15^2. Therefore, the triangle with sides measuring 9, 12, and 15 units is a right triangle.

    Rate this question:

  • 5. 

    A triangle with sides length of 12,25 and 27 units is a right triangle.

    • A.

      True

    • B.

      False

    Correct Answer
    B. False
    Explanation
    The triangle with sides of length 12, 25, and 27 units is not a right triangle because it does not satisfy the Pythagorean theorem. According to the theorem, in a right triangle, the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides. In this case, if we calculate the squares of the sides, we get 144, 625, and 729. However, 144 + 625 is not equal to 729, so the triangle is not a right triangle.

    Rate this question:

  • 6. 

    A triangle with sides length of 16, 30, and 34 units is a right triangle.

    • A.

      True

    • B.

      False

    Correct Answer
    A. True
    Explanation
    The given triangle satisfies the Pythagorean theorem, which states that in a right triangle, the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the lengths of the other two sides. In this case, 16^2 + 30^2 = 256 + 900 = 1156, which is equal to 34^2. Therefore, the triangle with sides of length 16, 30, and 34 units is a right triangle.

    Rate this question:

  • 7. 

    A triangle with sides length of 3,5, and 6 units is a right triangle.

    • A.

      True

    • B.

      False

    Correct Answer
    B. False
    Explanation
    A triangle with sides of length 3, 5, and 6 units cannot be a right triangle because it does not satisfy the Pythagorean theorem. According to the Pythagorean theorem, in a right triangle, the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the lengths of the other two sides. However, in this case, 3^2 + 5^2 does not equal 6^2, so the triangle cannot be a right triangle.

    Rate this question:

  • 8. 

    A triangle with sides length of 7, 24, and 25 units is a right triangle.

    • A.

      True

    • B.

      False

    Correct Answer
    A. True
    Explanation
    The given triangle with side lengths of 7, 24, and 25 units is a right triangle because it satisfies the Pythagorean theorem, which states that in a right triangle, the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the lengths of the other two sides. In this case, 7^2 + 24^2 = 49 + 576 = 625, which is equal to 25^2. Therefore, the triangle is a right triangle.

    Rate this question:

Quiz Review Timeline +

Our quizzes are rigorously reviewed, monitored and continuously updated by our expert board to maintain accuracy, relevance, and timeliness.

  • Current Version
  • Mar 21, 2023
    Quiz Edited by
    ProProfs Editorial Team
  • Mar 13, 2011
    Quiz Created by
    Suzdison
Back to Top Back to top
Advertisement
×

Wait!
Here's an interesting quiz for you.

We have other quizzes matching your interest.