1.
Angka-angka berikut ini yang merupakan kelipatan dari 6 adalah ....
Correct Answer
C. 6, 12 dan 18
Explanation
The numbers 6, 12, and 18 are all multiples of 6 because they can be divided evenly by 6.
2.
5 – 10 – 15 – 20 -25 – 30
Bilangan di atas bilangan kelipatan ....
Correct Answer
D. 5
Explanation
The numbers given in the sequence are multiples of 5. Each number is obtained by multiplying 5 with the corresponding number in the sequence (1, 2, 3, 4, 5, 6). Therefore, the correct answer is 5.
3.
Berikut ini yang merupakan bilangan keliatan persekutuan 3 dan 4 adalah ....
Correct Answer
D. 12 dan 24
Explanation
The numbers 12 and 24 are both divisible by 3 and 4. 12 is divisible by 3 because the sum of its digits (1 + 2) is divisible by 3, and it is divisible by 4 because the last two digits (12) form a number that is divisible by 4. Similarly, 24 is divisible by 3 because the sum of its digits (2 + 4) is divisible by 3, and it is divisible by 4 because the last two digits (24) form a number that is divisible by 4. Therefore, both 12 and 24 are common multiples of 3 and 4.
4.
Bilangan 40 merupakan bilangan kelipatan persekutuan dari ....
Correct Answer
D. 5 dan 8
Explanation
Bilangan 40 merupakan bilangan kelipatan persekutuan dari 5 dan 8. This means that 40 can be divided evenly by both 5 and 8 without leaving any remainder.
5.
Faktor dari 20 adalah ...
Correct Answer
A. 1, 2, 4, 5, 10 dan 20
Explanation
The factors of 20 are the numbers that divide evenly into 20 without leaving a remainder. In this case, the numbers 1, 2, 4, 5, 10, and 20 can all divide evenly into 20.
6.
Faktor prima dari 18 adalah ....
Correct Answer
B. 2 dan 3
Explanation
The prime factors of 18 are numbers that can divide 18 without leaving a remainder and are also prime numbers. In this case, the prime factors of 18 are 2 and 3. These are the only prime numbers that can divide 18 evenly.
7.
Faktor prima dari 30 adalah ....
Correct Answer
D. 2 , 3 dan 5
Explanation
The prime factors of 30 are 2, 3, and 5. Prime factors are the prime numbers that can divide a given number without leaving a remainder. In this case, 2 can divide 30 evenly, resulting in 15. Then, 3 can divide 15 evenly, resulting in 5. Finally, 5 can divide 5 evenly, resulting in 1. Since 1 is not a prime number, the prime factors of 30 are 2, 3, and 5.
8.
2, 3 dan 7 adalah faktor prima dari ....
Correct Answer
C. 84
Explanation
The prime factors of a number are the prime numbers that can be multiplied together to equal that number. In this case, the prime factors of 84 are 2, 3, and 7. This means that when you multiply 2, 3, and 7 together, the result is 84. Therefore, the correct answer is 84.
9.
Faktorisasi prima dari 48 adalah ....
Correct Answer
B. 2⁴ x 3
Explanation
The correct answer is 2⁴ x 3.
The prime factorization of 48 can be found by dividing it by prime numbers until we cannot divide anymore. In this case, we can divide 48 by 2 to get 24, then divide 24 by 2 again to get 12, and finally divide 12 by 2 to get 6. We cannot divide 6 by 2 anymore, so we move on to the next prime number, which is 3. We can divide 6 by 3 to get 2. At this point, we cannot divide 2 any further.
Therefore, the prime factorization of 48 is 2 x 2 x 2 x 2 x 3, which can be written as 2⁴ x 3.
10.
Faktorisasi prima dari 50 adalah ....
Correct Answer
A. 2 x 5²
Explanation
The prime factorization of 50 is 2 x 5² because 2 and 5 are both prime numbers and when multiplied together, they result in 50. The exponent of 2 is 1 because it appears once in the factorization, and the exponent of 5 is 2 because it appears twice.
11.
2 x 3² x 5² adalah faktorisasi prima dari ....
Correct Answer
C. 450
Explanation
The given expression 2 x 3² x 5² represents the prime factorization of 450. This means that 450 can be expressed as the product of its prime factors, which are 2, 3, and 5, raised to their respective powers. Therefore, the correct answer is 450.
12.
2² x 3² x 7 adalah faktorisasi prima dari ....
Correct Answer
D. 252
Explanation
The given expression can be simplified by finding the prime factorization of each number. The prime factorization of 2^2 is 2 x 2, the prime factorization of 3^2 is 3 x 3, and the prime factorization of 7 is 7. Multiplying these prime factors together gives 2 x 2 x 3 x 3 x 7, which equals 252. Therefore, the correct answer is 252.
13.
KPK dari 6 dan 8 adalah ....
Correct Answer
C. 24
Explanation
The KPK (Least Common Multiple) of 6 and 8 is the smallest number that is divisible by both 6 and 8. To find the KPK, we can list the multiples of both numbers and find the smallest common multiple. The multiples of 6 are 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, ... and the multiples of 8 are 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, ... The smallest number that appears in both lists is 24, so the KPK of 6 and 8 is 24.
14.
KPK dari 8 dan 10 adalah ....
Correct Answer
B. 40
Explanation
The correct answer is 40 because KPK (Least Common Multiple) is the smallest multiple that two or more numbers have in common. In this case, the multiples of 8 are 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, and so on. The multiples of 10 are 10, 20, 30, 40, 50, 60, 70, 80, 90, and so on. The smallest multiple that they have in common is 40.
15.
KPK dari 15 dan 12 adalah ....
Correct Answer
C. 60
Explanation
The question is asking for the KPK (least common multiple) of 15 and 12. To find the KPK, we need to find the smallest number that is divisible by both 15 and 12. The prime factorization of 15 is 3 * 5 and the prime factorization of 12 is 2 * 2 * 3. To find the KPK, we take the highest power of each prime factor that appears in either number. In this case, the highest power of 2 is 2 * 2, the highest power of 3 is 3, and the highest power of 5 is 5. Multiplying these together gives us 2 * 2 * 3 * 5 = 60, which is the KPK of 15 and 12.
16.
FPB dari 20 dan 25 adalah ....
Correct Answer
A. 5
Explanation
The greatest common divisor (GCD) or the highest common factor (HCF) of 20 and 25 is 5. This means that 5 is the largest number that can evenly divide both 20 and 25 without leaving a remainder.
17.
FPB dari 48 dan 36 adalah ....
Correct Answer
D. 12
Explanation
The greatest common divisor (GCD) or the highest common factor (HCF) of 48 and 36 is 12. This means that 12 is the largest number that can divide both 48 and 36 without leaving a remainder.
18.
FPB dari 100 dan 75 adalah ....
Correct Answer
D. 25
Explanation
The given question is asking for the highest common factor (FPB) of 100 and 75. To find the FPB, we need to determine the largest number that can divide both 100 and 75 without leaving a remainder. The factors of 100 are 1, 2, 4, 5, 10, 20, 25, 50, and 100. The factors of 75 are 1, 3, 5, 15, 25, and 75. The highest common factor of 100 and 75 is 25, as it is the largest number that can divide both 100 and 75 without leaving a remainder.
19.
Dani berenang 4 hari sekali dan Budi berenang 6 hari sekali. Maka mereka akan berenang bersama-sama lagi setiap .... hari sekali.
Correct Answer
D. 12
Explanation
Dani berenang setiap 4 hari sekali dan Budi berenang setiap 6 hari sekali. Kita perlu mencari kelipatan terkecil dari 4 dan 6. Kelipatan terkecil dari 4 dan 6 adalah 12. Jadi, mereka akan berenang bersama-sama lagi setiap 12 hari sekali.
20.
Bel A berbunyi 8 jam sekali. Bel B berbunyi 10 jam sekali. Kedua bel akan berbunyi bersama-sama setiap .... jam sekali.
Correct Answer
B. 40
Explanation
Bel A berbunyi setiap 8 jam sekali dan Bel B berbunyi setiap 10 jam sekali. Untuk kedua bel berbunyi bersama-sama, harus ada kelipatan waktu yang sama dari kedua bel tersebut. Kelipatan terkecil dari 8 dan 10 adalah 40. Jadi, kedua bel akan berbunyi bersama-sama setiap 40 jam sekali.
21.
Bus Mahkota lewat di depan rumah santi setiap 4 jam sekali. Bus Sentosa lewat setiap 10 jam sekali. Kedua bus akan lewat bersamaan setiap .... jam sekali.
Correct Answer
A. 20
Explanation
Bus Mahkota lewat setiap 4 jam sekali dan Bus Sentosa lewat setiap 10 jam sekali. Untuk kedua bus lewat bersamaan, harus ada kelipatan waktu terkecil dari kedua interval waktu tersebut. Kelipatan waktu terkecil dari 4 dan 10 adalah 20. Jadi, kedua bus akan lewat bersamaan setiap 20 jam sekali.
22.
Andi kursus komputer di Kursus Brilian 6 hari sekali dan Bagas setiap 8 hari sekali. Jika mereka terakhir kali krusus komputer pada tanggal 1 Januari 2017. Maka mereka akan mengikuti kursus bersama lagi pada tanggal ....
Correct Answer
B. 25 Januari 2017
Explanation
Andi mengikuti kursus komputer setiap 6 hari sekali, sedangkan Bagas mengikuti kursus setiap 8 hari sekali. Jika mereka terakhir kali mengikuti kursus pada tanggal 1 Januari 2017, maka kita perlu mencari kelipatan terkecil dari 6 dan 8 setelah tanggal tersebut. Kelipatan terkecil dari 6 setelah tanggal 1 Januari 2017 adalah 6 Januari 2017, sedangkan kelipatan terkecil dari 8 setelah tanggal tersebut adalah 8 Januari 2017. Karena Bagas mengikuti kursus setiap 8 hari sekali, maka tanggal kursus bersama mereka selanjutnya adalah tanggal kelipatan terkecil dari 8 setelah tanggal 1 Januari 2017, yaitu 8 Januari 2017.
23.
Ibu membeli 24 buah jeruk dan 30 buah apel. Ibu ingin menaruh buah tersebut ke piring dengan jumlah sama rata. Jumlah piring paling banyak yang bisa dipakai adalah ....
Correct Answer
C. 6
Explanation
The total number of fruits is 24 + 30 = 54. To distribute them equally among the plates, we need to find the greatest common divisor (GCD) of 24 and 30, which is 6. Therefore, the maximum number of plates that can be used is 6.
24.
Roni mempunyai 48 kelereng hijau dan 60 kelereng merah. Jika Roni ingin membagi kelerengnya ke dalam plastik dengan jumlah sama rata. Maka jumlah plastik paling banyak yang bisa digunakan adalah sebanyak ...
Correct Answer
D. 12 plastik
Explanation
Roni has a total of 108 marbles (48 green + 60 red). If he wants to divide them equally into plastic bags, he needs to find the greatest common divisor (GCD) of 48 and 60. The GCD of 48 and 60 is 12. Therefore, Roni can use a maximum of 12 plastic bags to distribute his marbles equally.
25.
Sinta membeli kue bolu dan kue donat untuk sajian ulang tahunnya. Kue bolu sebanyak 75 potong dan kue donat sebanyak 60 potong. Sinta ingin membagi kue tersebut ke nampan-nampan dengan jumlah sama banyak. Jumlah nampan paling banyak yang bisa digunakan adalah sebanyak ....
Correct Answer
A. 15 nampan
Explanation
Since Sinta wants to divide the cakes equally among the trays, the maximum number of trays she can use is determined by finding the greatest common divisor (GCD) of the number of cake slices for each type of cake. The GCD of 75 and 60 is 15. Therefore, Sinta can use a maximum of 15 trays to divide the cakes equally.