1.
Perbandingan 1/4 dengan 3/5 adalah ....
Correct Answer
C. 5 : 12
Explanation
The given fractions are 1/4 and 3/5. To compare these fractions, we need to find a common denominator. The least common multiple of 4 and 5 is 20. Multiplying 1/4 by 5/5 gives us 5/20, and multiplying 3/5 by 4/4 gives us 12/20. Therefore, the comparison between 1/4 and 3/5 is 5 : 12.
2.
Hasil dari 12 + 22 + 32 + ... + 92 adalah ....
Correct Answer
B. 285
Explanation
The correct answer is 285 because the given question asks for the sum of the numbers from 12 to 92. To find the sum, we can use the formula for the sum of an arithmetic series, which is (n/2)(first term + last term). In this case, the first term is 12 and the last term is 92. Plugging these values into the formula, we get (9/2)(12 + 92) = 45(104) = 4680. Therefore, the sum is 4680.
3.
Nilai dari (0,0639)2 adalah ....
Correct Answer
C. 0,00408321
Explanation
The correct answer is 0,00408321. This can be obtained by squaring the given value, 0.0639. When we square a number, we multiply it by itself. Therefore, 0.0639 multiplied by 0.0639 is equal to 0.00408321.
4.
Nilai √21 setara dengan ....
Correct Answer
A. 4,021
5.
Bilangan berikut yang merupakan bilangan kuadrat sekaligus bilangan pangkat tiga adalah ....
Correct Answer
D. 4096
Explanation
The number 4096 is the only one that is both a perfect square and a perfect cube. A perfect square is a number that can be expressed as the product of an integer multiplied by itself, and a perfect cube is a number that can be expressed as the product of an integer multiplied by itself twice. In this case, 4096 is the square of 64 and the cube of 16, making it the only number that satisfies both conditions.
6.
Manakah diantara bangun berikut yang merupakan bangun ruang:
- Prisma
- Lingkaran
- Bola
- Trapesium
Correct Answer
B. 1 dan 3 saja yang benar
Explanation
Prisma dan bola merupakan bangun ruang karena keduanya memiliki volume dan tiga dimensi. Lingkaran dan trapesium, di sisi lain, adalah bangun datar karena hanya memiliki dua dimensi. Oleh karena itu, jawaban yang benar adalah 1 dan 3 saja yang benar.
7.
Persamaan kuadrat x2 - 3x + 7 = 0
- punya dua akar real
- nilai x1 + x2 = -7
- nilai x1 . x2 = 3
- nilai x12 + x22 = -5
Correct Answer
D. Hanya 4 yang benar
Explanation
The given quadratic equation has two real roots. The sum of the roots is -7 and the product of the roots is 3. However, the sum of the squares of the roots is not -5. Therefore, only statement 4 is correct.
8.
Diketahui matriks
- Ordonya 2 x 2
- Determinan sama dengan 0
- Tidak memiliki invers
- Matriks non singular
Correct Answer
A. 1, 2 dan 3 saja yang benar
Explanation
The given answer states that options 1, 2, and 3 are correct. Option 1 is correct because the determinant of a 2x2 matrix is equal to the product of the diagonal elements minus the product of the off-diagonal elements, which in this case is equal to 0. Option 2 is correct because a matrix with a determinant of 0 does not have an inverse. Option 3 is correct because a matrix with a determinant of 0 is called a singular matrix. Therefore, options 1, 2, and 3 are the correct statements based on the given information.
9.
Correct Answer
B. 1 dan 3 saja yang benar
10.
Jika x = 2log 5 dan y = 2log 3
- x + y = 2log 8
- x + y = 2log 15
- x - y = 2log 2
- x - y = 2log 1,67
Correct Answer
C. 2 dan 4 saja yang benar
Explanation
The correct answers are 2 and 4 only.
In the given equation x = 2log 5 and y = 2log 3, we can substitute the values of x and y into each option to determine which ones are correct.
Option 1: x + y = 2log 8
Substituting the values of x and y, we get 2log 5 + 2log 3 ≠ 2log 8. Therefore, option 1 is incorrect.
Option 2: x + y = 2log 15
Substituting the values of x and y, we get 2log 5 + 2log 3 ≠ 2log 15. Therefore, option 2 is incorrect.
Option 3: x - y = 2log 2
Substituting the values of x and y, we get 2log 5 - 2log 3 = 2log (5/3) = 2log 1.67. Therefore, option 3 is correct.
Option 4: x - y = 2log 1.67
Substituting the values of x and y, we get 2log 5 - 2log 3 = 2log (5/3) = 2log 1.67. Therefore, option 4 is correct.
Hence, the correct answers are options 2 and 4 only.
11.
Misalkan x, y, dan z menyatakan bilangan real yang memenuhi persamaan x + 2y + 3z = 10.
Berapakah nilai x ?
Putuskan apakah pernyataan [1] dan [2] berikut cukup untuk menjawab pertanyaan tersebut.
- z = 1
- x + y = 5
Correct Answer
C. DUA pernyataan BERSAMA – SAMA cukup untuk menjawab pertanyaan, tetapi SATU pernyataan SAJA tidak cukup
Explanation
The equation x + 2y + 3z = 10 can be rewritten as x = 10 - 2y - 3z. Pernyataan [1] states that z = 1, so we can substitute z = 1 into the equation to get x = 10 - 2y - 3(1) = 7 - 2y. Pernyataan [2] states that x + y = 5, so we can substitute x + y = 5 into the equation to get (7 - 2y) + y = 5, which simplifies to y = 2. Using the value of y, we can substitute it back into x = 7 - 2y to get x = 7 - 2(2) = 3. Therefore, both statements together are sufficient to determine the value of x.
12.
Correct Answer
A. Pernyataan [1] SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan [2] SAJA tidak cukup
Explanation
Statement [1] alone is sufficient to answer the question, but statement [2] alone is not enough.
13.
Diketahui fungsi kuadrat f(x) = ax2 + bx + c . Apakah fungsi kuadrat tersebut memotong sumbu x di dua titik?
Putuskan apakah pernyataan [1] dan [2] berikut cukup untuk menjawab pertanyaan tersebut.
- a =2 , b = 3
- Diskriminan < 0
Correct Answer
E. Pernyataan [1] dan pernyataan [2] tidak cukup untuk menjawab pertanyaan
Explanation
The given statements [1] and [2] are not sufficient to answer the question. In order to determine whether the quadratic function intersects the x-axis at two points, we need to consider the discriminant. If the discriminant is greater than zero, then the function intersects the x-axis at two distinct points. However, if the discriminant is less than zero, then the function does not intersect the x-axis at any point. The given statement only tells us that the discriminant is less than zero, but it does not provide any information about the value of the discriminant. Therefore, we cannot determine whether the function intersects the x-axis at two points based on the given statements.
14.
Diketahui U1 , U2 , U3 , . . . adalah barisan aritmatika. Jika Un adalah suku ke – n dan Sn adalah jumlah n suku yang pertama. Berapa nilai U10 ?
Putuskan apakah pernyataan [1] dan [2] berikut cukup untuk menjawab pertanyaan tersebut.
- Beda barisan (b) bernilai negatif
- S4 = 20
Correct Answer
E. Pernyataan [1] dan pernyataan [2] tidak cukup untuk menjawab pertanyaan
Explanation
The given question asks for the value of U10, which is the 10th term of the arithmetic sequence. The first statement says that the common difference (b) of the sequence is negative, but it does not provide any information about the value of U10. The second statement says that the sum of the first four terms (S4) is 20, but it also does not give any direct information about the value of U10. Therefore, neither statement alone is sufficient to determine the value of U10.
15.
Diketahui f { g(x) } = 9x2 + 9x + 4. Berapakah nilai f (4) ?
Putuskan apakah pernyataan [1] dan [2] berikut cukup untuk menjawab pertanyaan tersebut.
- f(x) = x2 + x + 2
- g(x) = 3x + 1
Correct Answer
D. Pernyataan [1] SAJA cukup untuk menjawab pertanyaan dan pernyataan [2] SAJA cukup
Explanation
The statement [1] alone is sufficient to answer the question because it provides the function f(x) = x^2 + x + 2. By substituting x = 4 into this function, we can find the value of f(4). The statement [2] alone is not necessary because it provides the function g(x) = 3x + 1, which is not needed to find the value of f(4). Therefore, the answer is that statement [1] alone is sufficient to answer the question and statement [2] alone is also sufficient.
16.
Tersedia lima kursi yang disusun berjajar dengan setiap kursi ditempati paling banyak satu orang.
Manakah hubungan yang benar antara kuantitas P dan Q berikut berdasarkan informasi yang diberikan ?
P
Q
Banyak susunan empat orang duduk pada kursi yang disediakan
24
Correct Answer
A. P > Q
Explanation
Based on the information given, it is stated that there are five seats arranged in a row, with each seat occupied by at most one person. The question asks about the relationship between the quantities P and Q. The answer P > Q means that there are more possible arrangements of four people sitting in the available seats than there are possible values for Q. This is because P represents the number of possible arrangements of four people, which is 24, while Q is not specified. Therefore, it can be concluded that P is greater than Q.
17.
Diketahui barisan geometri dengan suku pertama = 3 dan rasio = 2.
Manakah hubungan yang benar antara kuantitas P dan Q berikut berdasarkan informasi yang diberikan ?
P
Q
3070
Suku ke 11
Correct Answer
B. Q > P
Explanation
Based on the given information, the first term of the geometric sequence is 3 and the common ratio is 2. The question asks for the relationship between the quantities P and Q. P is given as 3070, while Q is the 11th term of the sequence. Since the common ratio is 2, we can determine that each term is obtained by multiplying the previous term by 2. Therefore, as we move further in the sequence, each term will be larger than the previous term. So, the 11th term (Q) will be greater than 3070 (P). Therefore, the correct answer is Q > P.
18.
Diketahui x = 3 dan y = 1
Manakah hubungan yang benar antara kuantitas P dan Q berikut berdasarkan informasi yang diberikan ?
P
Q
x√64
xy + 3y
Correct Answer
B. Q > P
Explanation
Based on the information given, we know that x = 3 and y = 1.
For P, we have x√64 = 3√64 = 3(8) = 24.
For Q, we have xy + 3y = 3(1) + 3(1) = 3 + 3 = 6.
Therefore, Q > P.
19.
Sebuah dadu dilempar 1 kali.
Manakah hubungan yang benar antara kuantitas P dan Q berikut berdasarkan informasi yang diberikan ?
P
Q
Peluang muncul angka ganjil
Peluang muncul angka prima
Correct Answer
C. P = Q
Explanation
The information given states that a dice is rolled once. Based on this information, it is not possible to determine whether the probability of getting an odd number (P) is greater than, less than, or equal to the probability of getting a prime number (Q). Therefore, the correct answer is that P is equal to Q.
20.
Pada sebuah kelas yang berisi 40 orang siswa, 29 diantaranya berjenis kelamin perempuan, diadakan ulangan matematika. Diketahui nilai modus hasil ulangan adalah 75.
Manakah hubungan yang benar antara kuantitas P dan Q berikut berdasarkan informasi yang diberikan ?
P
Q
Nilai median hasil ulangan matematika
Nilai Rata – rata hasil ulangan matematika
Correct Answer
E. Informasi yang diberikan tidak cukup untuk memutuskan salah satu dari tiga diatas
Explanation
Based on the information given, we only know that the mode of the math test scores is 75. However, we do not have any information about the median or the average of the scores. Without knowing the values of the median or the average, we cannot determine the relationship between P (the median) and Q (the average). Therefore, the correct answer is that the information given is not enough to decide any of the three options.