Quiz Persamaan Kuadrat

Reviewed by Editorial Team
The ProProfs editorial team is comprised of experienced subject matter experts. They've collectively created over 10,000 quizzes and lessons, serving over 100 million users. Our team includes in-house content moderators and subject matter experts, as well as a global network of rigorously trained contributors. All adhere to our comprehensive editorial guidelines, ensuring the delivery of high-quality content.
Learn about Our Editorial Process
| By Reini
R
Reini
Community Contributor
Quizzes Created: 1 | Total Attempts: 1,302
| Attempts: 1,302 | Pertanyaan: 10
Please wait...
Question 1 / 10
0 %
0/100
Score 0/100
1. Diberikan persamaan berikut ; x2 + 2x − 15 = 0tentukan faktor-faktor dari persamaan berikut. 

Explanation

x2 + 2x − 15 = 0
+ → 2
x → − 15
Angkanya : 5 dan − 3
Sehingga
x2 + 2x − 15 = 0
(x + 5)(x − 3) = 0
x = − 5 atau x = 3

Submit
Please wait...
About This Quiz
Quiz Persamaan Kuadrat - Quiz

Personalize your quiz and earn a certificate with your name on it!
2. Faktor dari persamaan-persamaan kuadrat di bawah ini adalah:x2 + 7x + 12 = 0 

Explanation

Bentuk umum persamaan kuadrat : ax2 + bx + C = 0
Untuk nilai a = 1 seperti semua soal nomor 2, pemfaktoran sebagai berikut:
→ Cari dua angka yang jika di tambahkan (+) menghasilkan b dan jika dikalikan (x) menghasilkan c
x" + 7x + 12 = 0
+ → 7
x → 12
Angkanya : 3 dan 4
Sehingga
x2 + 7x + 12 = 0
(x + 3)(x + 4) = 0
x = − 3 atau x = − 4

Submit
3. tentukan himpunan penyelesian dari persamaan :4 x2 − 16 x = 0 

Explanation

4 x" − 16 x = 0
Sederhanakan dulu, masing-masing bagi 4 :
x" − 4 x = 0
x(x − 4) = 0
x = 0 atau x = 4
himpunan penyelesian {0,4}

Submit
4. Tentukan akar dari x" + x − 2 = 0.Tentukan akar dari x2 + x − 2 = 0.Sumber: https://amaluddinnasution.blogspot.co.id/2015/05/cara-mencari-akar-akar-persamaan-kuadrat.html?enContent is Courtesy of Amaluddinnasution.blogspot.comTentukan akar dari x2 + x − 2 = 0.Sumber: https://amaluddinnasution.blogspot.co.id/2015/05/cara-mencari-akar-akar-persamaan-kuadrat.html?enContent is Courtesy of Amaluddinnasution.blogspot.com

Explanation

x2 + x − 2 = 0 Dik a = 1, b = 1, dan c = -2 Dengan rumus abc : ⇒ x1,2 = -1 ± √12 − 4(1)(-2) 2(1) ⇒ x1,2 = -1 ± √1 + 8 2 ⇒ x1,2 = -1 ± 3 2 ⇒ x1 = (-1 + 3)/2 = 1 ⇒ x2 = (-1 + 3)/2 = -2 Jadi,x = 1 atau x = -2.

Submit
5. tentukan himpunan penyelesaian persamaan kuadrat  berikut:p2 − 16 = 0Tentukan akar dari persamaan berikut : x2 + x − 2 = 0Sumber: https://amaluddinnasution.blogspot.co.id/2015/05/cara-mencari-akar-akar-persamaan-kuadrat.html?enContent is Courtesy of Amaluddinnasution.blogspot.comTentukan akar dari persamaan berikut : x2 + x − 2 = 0Sumber: https://amaluddinnasution.blogspot.co.id/2015/05/cara-mencari-akar-akar-persamaan-kuadrat.html?enContent is Courtesy of Amaluddinnasution.blogspot.comTentukan akar dari persamaan berikut : x2 + x − 2 = 0Sumber: https://amaluddinnasution.blogspot.co.id/2015/05/cara-mencari-akar-akar-persamaan-kuadrat.html?enContent is Courtesy of Amaluddinnasution.blogspot.com

Explanation

p" − 16 = 0
(p + 4)(p − 4) = 0
p + 4 = 0 → p = − 4
p − 4 = 0 → p = 4
Sehingga x = 4 atau x = − 4
Himpunan penyelesaian {−4, 4}

Submit
6. tentukan akar dari persamaan dari x2 − 9 + 14 = 0

Explanation

) x2 − 9 x + 14 = 0
+ → − 9
x → 14
Angkanya : −2 dan − 7
Sehingga
x2 − 9x + 14 = 0
(x − 2)(x − 7) = 0
x = 2 atau x = 7

Submit
7. Diberikan persamaan-persamaan kuadrat sebagai berikut:2x2 −  x − 6 = 0fakto-faktor persamaan berikut adalah... 

Explanation

2x2 + x − 6 = 0
data
a = 2, b = 1 dan c = − 6
Cari angka P dan Q
P + Q = b = 1
P.Q = ac = (2)(−6) = − 12
Sehingga P = 4 dan Q = − 3

masukkan pola
1/a (ax + P)(ax + Q) = 0
1/2(2x + 4)(2x − 3) sederhanakan, kalikan 1/2 dengan (2x + 4)
(x + 2)(2x − 3) = 0
x = −2 atau x = 3/2

Submit
8. x1 dan x2 merupakan aka-akar persamaan kuadrat 2x2 + x − 4 = 0, maka persamaan kuadrat yang akar-akarnya (x1 - 4) dan (x2 - 4) adalah .....

Explanation

Tinjau persamaan kuadrat yang pertama : ⇒ 2x2 + x − 4 = 0 Diketahui : a = 2, b = 1, dan c = -4. Jumlah akarnya : ⇒ x1 + x2 = -b a ⇒ x1 + x2 = -1 2 Hasil kali akarnya : ⇒ x1.x2 = c a ⇒ x1.x2 = -4 2 ⇒ x1.x2 = -2 Selanjutnya tinjau jumlah dan hasil kali akar-akar yang baru. Jumlah akarnya : ⇒ (x1 - 4) + (x2 - 4) = (x1 + x2) − 8 ⇒ (x1 - 4) + (x2 - 4) = -½ − 8 ⇒ (x1 - 4) + (x2 - 4) = -17⁄2 Hasil kali akarnya : ⇒ (x1 - 4).(x2 - 4) = (x1.x2) − 4x1 − 4x2 + 16 ⇒ (x1 - 4).(x2 - 4) = (x1.x2) − 4(x1 + x2) + 16 ⇒ (x1 - 4).(x2 - 4) = -2 − 4(-½) + 16 ⇒ (x1 - 4).(x2 - 4) = -2 + 2 + 16 ⇒ (x1 - 4).(x2 - 4) = 16 Jadi persamaan kuadrat barunya : ⇒ x2 − {(x1 - 4) + (x2 - 4)}x + (x1 - 4).(x2 - 4) = 0 ⇒ x2 − (-17⁄2)x + 16 = 0 ⇒ 2x2 + 17x + 32 = 0

Submit
9. Diketahui m dan n merupakan akar-akar dari persamaan kuadrat 2x" − 3x + 6 = 0. Persamaan kuadrat yang akar-akarnya 1/m dan 1/n adalah .....

Explanation

Tinjau persamaan kuadrat yang pertama : ⇒ 2x" − 3x + 6 = 0 Diketahui : a = 2, b = -3, dan c = 6. Jumlah akarnya : ⇒ m + n = -b a ⇒ m + n = 3 2 Hasil kali akarnya : ⇒ m.n = c a ⇒ m.n = 6 2 ⇒ m.n = 3 Selanjutnya tinjau jumlah dan hasil kali akar-akar yang baru. Jumlah akarnya : ⇒ 1 + 1 = m + n m n m.n ⇒ 1 + 1 = 3⁄2 m n 3 ⇒ 1 + 1 = 1 m n 2 Hasil kali akarnya : ⇒ 1 . 1 = 1 m n m.n ⇒ 1 . 1 = 1 m n 3 Dengan demikian, persamaan kuadrat baru adalah : ⇒ x" − (1/m + 1/n)x + (1/m.1/n) = 0 ⇒ x" − ½x + ⅓ = 0 ⇒ 6x" − 3x + 2 = 0 Cara Praktis : Jika akar-akar persamaan kuadrat yang baru adalah 1/x1 dan 1/X" (berkebalikan), maka persamaan kuadrat baru itu dapat kita cari dengan rumus : cx" + bx + a = 0 Sekarang perhatikan lagi persamaan kuadrat yang lama : ⇒ 2x" − 3x + 6 = 0 Diketahui : a = 2, b = -3, dan c = 6. Persaman kuadrat barunya : ⇒ cx" + bx + a = 0 ⇒ 6x" + (-3)x + 2 = 0 ⇒ 6x" − 3x + 2 = 0

Submit
10. Akar-akar persamaan kuadrat x2 + 2x + 4 = 0 adalah m dan n. Persamaan kuadrat baru yang akar-akarnya (m + 2) dan (n + 2) adalah ....

Explanation

x" + 2x + 4 = 0 Diketahui : a = 1, b = 2, dan c = 4. Jumlah akarnya : ⇒ m + n = -b a ⇒ m + n = -2 1 ⇒ m + n = -2 Hasil kali akarnya : ⇒ m.n = c a ⇒ m.n = 4 1 ⇒ m.n = 4 Selanjutnya tinjau jumlah dan hasil kali akar-akar yang baru. Jumlah akarnya : ⇒ (m + 2) + (n + 2) = (m + n) + 4 ⇒ (m + 2) + (n + 2) = -2 + 4 ⇒ (m + 2) + (n + 2) = 2 Hasil kali akarnya : ⇒ (m + 2).(n + 2) = m.n + 2m + 2n + 4 ⇒ (m + 2).(n + 2) = m.n + 2(m + n) + 4 ⇒ (m + 2).(n + 2) = 4 + 2(-2) + 4 ⇒ (m + 2).(n + 2) = 4 Selanjutnya susun persamaan kuadrat barunya : ⇒ x" − {(m + 2) + (n + 2)}x + (m + 2).(n + 2) = 0 ⇒ x" − 2x + 4 = 0

Submit
View My Results

Quiz Review Timeline (Updated): Mar 21, 2023 +

Our quizzes are rigorously reviewed, monitored and continuously updated by our expert board to maintain accuracy, relevance, and timeliness.

  • Current Version
  • Mar 21, 2023
    Quiz Edited by
    ProProfs Editorial Team
  • Jan 06, 2016
    Quiz Created by
    Reini
Cancel
  • All
    All (10)
  • Unanswered
    Unanswered ()
  • Answered
    Answered ()
Diberikan persamaan berikut ; x2 + 2x − 15 = 0tentukan...
Faktor dari persamaan-persamaan kuadrat di bawah ini adalah:x2 + 7x +...
Tentukan himpunan penyelesian dari persamaan :4 x2 − 16 x =...
Tentukan akar dari x" + x − 2 = 0.Tentukan akar dari x2 + x...
Tentukan himpunan penyelesaian persamaan kuadrat  berikut:p2...
Tentukan akar dari persamaan dari x2 − 9 + 14 = 0
Diberikan persamaan-persamaan kuadrat sebagai berikut:2x2...
X1 dan x2 merupakan aka-akar persamaan kuadrat 2x2 + x − 4 = 0,...
Diketahui m dan n merupakan akar-akar dari persamaan kuadrat 2x"...
Akar-akar persamaan kuadrat x2 + 2x + 4 = 0 adalah m dan n. Persamaan...
Alert!

Advertisement