Proving Statements

Please wait...
Question 1 / 13
🏆 Rank #--
Score 0/100

1. There is a unique real number 0 such that for every real number aa + 0 = a and 0 + a = a.

Submit
Please wait...
About This Quiz
Proving Statements - Quiz

Select the correct answer from the choices provided.

2.

What first name or nickname would you like us to use?

You may optionally provide this to label your report, leaderboard, or certificate.

2. For all real number a and b: a + b = b +   ab = ba

Submit

3. There is a unique real number 1 such that for every real number aa «math xmlns=¨https://www.w3.org/1998/Math/MathML¨»«mo»§#183;«/mo»«/math» 1 = a   and   1 «math xmlns=¨https://www.w3.org/1998/Math/MathML¨»«mo»§#183;«/mo»«/math» a = a.   

Submit

4. For all real numbers a, b, and c:  (a + b) + c  =  a + (b + c)

Submit

5. For all real numbers, a, b, and c:  If aand b =c, then a = c

Submit

6. For every nonzero real number a, there is a unique real number «math xmlns=¨https://www.w3.org/1998/Math/MathML¨»«mfrac»«mn»1«/mn»«mi»a«/mi»«/mfrac»«/math» such that: «math xmlns=¨https://www.w3.org/1998/Math/MathML¨»«mo»§#183;«/mo»«/math»«math xmlns=¨https://www.w3.org/1998/Math/MathML¨»«mfrac»«mn»1«/mn»«mi»a«/mi»«/mfrac»«/math» = 1 and «math xmlns=¨https://www.w3.org/1998/Math/MathML¨»«mfrac»«mn»1«/mn»«mi»a«/mi»«/mfrac»«/math» «math xmlns=¨https://www.w3.org/1998/Math/MathML¨»«mo»§#183;«/mo»«/math» a = 1

Submit

7. Select the missing reason from the choices below. 

Submit

8. For every real number a; there is a unique real number -a such that: a + (-a) = 0 and -a + a = 0

Submit

9. If a, b, and c are any real numbers and a = b, then: a + c = b + c and c + a = c + b.

Submit

10. For all real numbers, a, b, and c:  If a = b, then b = a

Submit

11. For every real number a, a (-1) = -a and (-1a = -a.

Submit

12. Select the missing reason from the choices below.

Submit
×
Saved
Thank you for your feedback!
View My Results
Cancel
  • All
    All (12)
  • Unanswered
    Unanswered ()
  • Answered
    Answered ()
There is a unique real number 0 such that for every real number...
For all real number a and b:...
There is a unique real number 1 such that for every real number...
For all real numbers a, b, and c: ...
For all real numbers, a, b, and c: ...
For every nonzero real number a, there is a unique real...
Select the missing reason from the choices below. 
For every real number a; there is a unique real number -a such that:...
If a, b, and c are any real numbers and a = b, then:...
For all real numbers, a, b, and c: ...
For every real number a, a (-1) = -a and (-1) a = -a.
Select the missing reason from the choices below.
play-Mute sad happy unanswered_answer up-hover down-hover success oval cancel Check box square blue
Alert!